

Human Uses of Nuclear Science

Atoms for Peace Conference
Lawrence Livermore National Laboratory
November 14-15, 2003
Martha Krebs

Where We Are Today

- Medicine
 - Sterilization
 - Drug Testing
 - Diagnosis
 - Therapy
- Agriculture
 - Plants
 - Animals
 - Food Processing

- Industry
 - Process Evaluation and Controls
 - MaterialsCharacterization
- Personal Care
- Public Safety
 - Screening
 - Smoke Detectors

What's Notable About These Applications

- Evolutionary Not Disruptive
 - Remarkable progress that was essentially foreseen 25 years ago
- Focuses inwardly on the contributions of knowledge about the properties of the nucleus
- Addresses specific areas of technical practice

Enduring Basic Human Needs

- □ Health
- Nutrition
- Shelter
- Family/Community
- Communication
- Security/Comfort
- Work
- Understanding

Technology can both satisfy and disrupt these needs; Scientists and engineers should weigh their efforts within the framework of these needs and recognize their limitations.

Disruptive Science and Technology

- Characterization,
 Manipulation and Control at the Nanoscale
- Quantum Phenomena at the Mesoscale
- Complex Systems,Emergent Phenomena

- Single Molecule Medicine
- Quantum Communication and Computation
- Autonomous, Networked Microagent Systems
- □ Single Event Effects

Molecular Medicine

- Noninvasive assays will permit real-time monitoring and modification of targeted interventions and therapeutic strategies
- Molecular imaging will play a key role in drug discovery, development, and delivery at the preclinical level.
- New clinical applications of conventional imaging technologies are likely to play increasingly important roles, particularly in oncology.

Harvey Herschman, Science, October 24, 2003, p.605

Quantum entanglement accounts for bulk magnetic properties of LiHo_{0.045}Y_{0.955}F₄

Entangled quantum state of magnetic dipoles, S. GHOSH, T. F. ROSENBAUM, G. AEPPLI & S. N. COPPERSMITH *Nature* **425**, 48 - 51 (04 September 2003)

Tiny Sensors Need Tiny Power Sources

Disruptive Science and Technology

- Characterization,
 Manipulation and Control at the Nanoscale
- Quantum Phenomena at the Mesoscale
- Complex Systems,Emergent Phenomena

- Single Molecule Medicine
- Quantum Communication and Computation
- Autonomous, NetworkedMicroagent Systems
- □ Single Event Effects

What's in the Future for Nuclear Science

- More Interaction with other disciplines
- Nexus with the very small
- Understanding Systems of Systems
- Detection/Understanding of Single Events

Enduring Basic Human Needs

- Health
- Nutrition
- Shelter
- □ Family/Community
- Communication
- Work
- Security/Comfort
- Understanding

- Energy
- Rule of Law
- Democracy
- Environmental Quality
- Liberty
- Privacy
- Weapons

Derived Needs

Technology can both satisfy and disrupt these needs; Scientists and engineers should weigh their efforts within the framework of these needs and recognize their limitations.